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Usage of ASCR Facilities

2016 INCITE Allocations at ALCF

@ INCITE projects are targeted
to a few, very large science
projects.

BIOLOGICAL SCIENCES 3%

CHEMISTRY 20%
PUTER

CIENCE 2%

2014 INCITE
BY DOMAIN

3.5 BILLION
CORE-HOURS

® >50% of the time for
allocations is spent in atomics
scale calculations

EARTH SCIENCE 9%

MATERIALS SCIENCE 23%

ENGINEERING 8%

INCITE 60%, ALCC 30%, Discretionary 10%

http://science.energy.gov/ascr/highlights/
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"Phase diagram” of calculation cost in
computational chemistry
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"Phase diagram” of calculation cost in
computational chemistry
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Computational Chemistry Dilemma

* Computational chemistry Agkusey m
simulations require accurate poiogical = .
. qualitative == s Coarse
methods at meaningful scales T I grained
(space,time), which consequently o “ empirical

need large computing resources. 0.0001ev T @ “oer Tight binding
QMC
0 | cl 1 | | : L

* Avery few software for petaflop ' ' !

computations for electronic Time 0 0 ps ns ms
structure.
. High Accuracy-
* Computer power duplicates every T _g Y
~ 2 year. High Cost

* New architectures challenge
programmers and users for science
applications.

* Long life computer programs
require large community support
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KOhn-Sham SCheme Density Functional Theory

Self-consistent GGA-DFT ETOtCLZ = E'[p (,’:*)]
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Density as sum of orbital densities
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Exact ground state density
minimizes E
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|
Eigenvalue Solver dominates large

calculations

@ a real physical problems
(layers graphene on SiC)

10

Total Intel Ivy Bridge
Eigensolver 320 CPU Cores

== orid based operations
— O(N)

(6+/3 x 64/3) — R30° 103
O(N%)

10°

Model “ZLG” “MLG” “BLG” “3LG”
Nbp 48498 61680 74862 88044
Nat 1310 1648 1986 2324

*for one self-consistent step
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3LG:
3 layer graphene on SiC
88044 basis functions

2324 atoms
FHI-aims code

3LG

Mare Nostrum - Intel SandyBridge-EP E5-2670
ppn = 8, xHost, Codeversion 150203, poe
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ELSI: ELectronic Structure Infrastructure

RELS

http://www.elsi-interchange.org

Volker Blum (Duke University)

Jianfeng Lu (Duke University)

Lin Lin (University of California at Berkeley)

Chao Yang (Lawrence Berkeley National Laboratory)
Alvaro Vazquez-Mayagoitia (Argonne National Laboratory)
Fabiano Corsetti (Imperial College, London)
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A library to accelerate electronic
structure simulations

Electronic Structure

Community Codes

FHI-aims

SIESTA

Quantum
Espresso

VASP
Ablnit
GPAW
Wien2k
etc.
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ELSI Interface

S T T

. Performance:

link to high performant libraries used on
modern HPC facilities

Ease-of-Use:

standardized interface to libraries which
solve or circumvent the Kohn-Sham
eigenvalue problem as well as access to
their distributed storage environment

Range-of-Use:

widens the range of possible systems to be
tackled by accessing the library suitable to
the problem

GELSI

-
-

**NFS funded




ELPA

Fast dense eigenvalue solver. Designed for

high-performance architectures.

Useful for electronic structure and many
other applications. GPL license. F90 code.
Uses a Block-cyclic distribution scheme
mapping the group processors in a 2D

grid. Relies on BLACS matrix
parallelization layout.

Uses efficiently external algebra libraries

as BLAS, MKL, ESSL, etc.

Main kernels in QR algorithms are
hardcoded with intrinsic processor
instructions (QPX, SSE, AVX, etc).

Solves for real or complex, and for entire

or partial number of eigenvalues

Support for:

SANVIDIA.
CUDA.

OpenMP

ELPA2 2-stage eigenvalue solver

® ©) ®
full matrix banded matrix tridiagonal matrix
® O
Option 1: 1‘ 1‘
GPU GPU CPU
Option 2: 1‘
Many-core
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PEXSI

Selected inversion using sparse

Electron density could be _ _
matrix techniques

evaluated without diagonalizing
Kohn-Sham-Fock Matrix

p=diag()

Pole expansion

I'~Im lz w;(H — zil)_ll

Current support for: DGDFT, Siesta,

Massively parallel distributed
CP2K, QuantumEspresso

memory implementation

e Can use 1-100K processors. e C++ code with interfaces for Fortran and C.
* OpenMP ready, GPU in progress. * Relies on SuperLU and Par/Metis.
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Orbital Minimization Method.- Iterative minimization
algorithm originally devised for linear-scaling DFT
(SIESTA code)

o~

E[C] = 2tr {[2] — S| Hy

The basic strategy: find the N/2 Wannier functions describing
the occupied subspace for an N-electron system by direct
unconstrained minimization

Advantages:

1. No orthogonal constrain/no explicit orthogonalization

2. Exactly quartic line search for steepest descent or conjugate
gradient

3. Reuse the converged solution in the previous SCF iteration as the
initial guess

. 4. Possible extension to a linear scaling method

Argonne Legdershjp . . . .
Computing FBHN F Corsetti - Computer Physics Communications, 2014



I
Conclusions

1. Most chemistry and physics simulations codes rely on external community
supported libraries for linear algebra (Scalapack, ELPA, Elemental, etc).

2. The solution of eigen value problems is one of the most computational
demanding procedure in atomic-scale calculations. For example, within the Kohn-
Sham scheme, this effort could cost 60% of the total calculation time.

3. ELSlis a library that offers fast alternatives to solve the one of the major
bottlenecks in Density Functional Theory which is the minimization of the energy.

4. ELSI library is the conjunction of well established algorithms with the aim to
speed up electronic structure calculations in massive parallel environments.

5. Some ELSI stakeholders and partner codes have thousands of users. We aim to
benefit a wide spectrum of scientists.

6. We plan to support both graphic accelerators and many-core architectures to
make the most with DOE's CPU/hrs.
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Thanks...
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